2375. Расчет и проектирование тепловых насосов

Как рассчитать и выбрать тепловой насос.

20kollektora/proektirovanie%20solnechnix%20sistem/3388582750 86cb4b8814.jpg /%Как известно, тепловые насосы используют бесплатные, возобновляемые источники энергии: низкопотенциальное тепло воздуха, грунта, подземных, открытых незамерзающих водоемов, сточных и сбросовых вод и воздуха, а также сбрасываемое тепло технологических предприятий. Для того чтобы это собрать затрачивается электроэнергия, но отношение количества получаемой тепловой энергии к количеству расходуемой электрической составляет порядка 3 7 раз.

Если говорить только об окружающих нас источниках низкопотенциального тепла для использования в отопительных целях, это наружный воздух температурой от 3 до +15 С, отводимый из помещения воздух 15 25 С , подпочвенные 4 10 С и грунтовые около 10 C воды, озерная и речная вода 5 10 С , грунтовой поверхностный ниже точки промерзания 3 9 С и земельный глубинный более 6 м — 8 о С .

20nasosi/999.jpg /%

Отбор тепла из окружающей среды внутренний округ .

В испарителе прокачивается жидкая рабочая среда-хладагент, при низком давлении. Тепловой уровень температур окружающий испаритель, выше соответствующей температуры кипения рабочей среды хладагент подбирается такой, что может закипать даже при минусовой температуре . За счет этого перепада температур происходит передача тепла окружающей среды, рабочей среде, которая при этих температурах закипает и испаряется превращается в пар . Требуемое для этого тепло отбирается от любого выше перечисленного низкопотенциального источника тепла.

Более подробно об восполняемых источниках энергии

Если в качестве источника тепла выбран атмосферный или вентиляционный воздух, применяются тепловые насосы, работающие по схеме воздух вода . Насос может быть расположен внутри или снаружи помещения, с встроенным или выносным конденсатором. Воздух продувается через теплообменник испаритель с помощью вентилятора.

В качестве источника низкопотенциальной тепловой энергии могут использоваться подземные воды с относительно низкой температурой либо грунт поверхностных слоев земли. Теплосодержание грунтового массива в общем случае выше. Тепловой режим грунта поверхностных слоев земли формируется под действием двух основных факторов падающей на поверхность солнечной радиации и потоком радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15 20 м.

Виды горизонтальных теплообменников:

  1. теплообменник из последовательно соединенных труб
  2. теплообменник из параллельно соединенных труб
  3. горизонтальный коллектор, уложенный в траншее
  4. теплообменник в форме петли
  5. теплообменник в форме спирали, расположенной горизонтально так называемый slinky коллектор
  6. теплообменник в форме спирали, расположенной вертикально.

Вода хорошо аккумулирует солнечное тепло. Даже в холодный зимний период грунтовые воды имеют постоянную температуру от +7 до +12 C. В этом заключается преимущество данного источника тепла. Вследствии постоянного температурного уровня, этого источник тепла имеет высокий коэффициент преобразования через тепловой насос в течение всего года. К сожалению, грунтовые воды не везде имеются в достаточном количестве. При использовании в качестве источника грунтовые воды, подача осуществляется из скважины с помощью погружного насоса на вход в теплообменник испаритель теплового насоса, работающего по схеме вода вода/открытая система , с выхода теплообменника вода, либо закачивается в другую скважину, либо сбрасывается в водоем. Достоинством открытых систем является возможность получения большого количества тепловой энергии при относительно низких затратах. Однако скважины требуют обслуживания. Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы:

— достаточная водопроницаемость грунта, позволяющая
пополняться запасам воды

— хороший химический состав грунтовых вод например, низкое железосодержание , позволяющий избежать проблем, связанных с образованием отложений на стенках труб и коррозией.

Открытые системы чаще используются для тепло- или холодоснабжения крупных зданий. Самая большая в мире геотермальная теплонаносная система использует в качестве источника низкопотенциальной тепловой энергии грунтовые воды. Эта система расположена в США в г. Луисвилль Louisville , штат Кентукки. Система используется для тепло- и холодоснабжения гостинично-офисного комплекса ее мощность составляет примерно 10 МВт.

Возьмем другой источник водоем, на его дно можно укладывать петли из пластиковой трубы, схема вода-вода/закрытая система . По трубопроводу циркулирует раствор этиленгликоля антифриз , который через теплообменник испаритель теплового насоса передает тепло хладагенту.

Грунт обладает способностью аккумулировать солнечную энергию в течение длительного периода времени, что обеспечивает сравнительно равномерную температуру источника тепла в течении года и, тем самым, высокий коэффициент преобразования теплового насоса. Температура в верхних слоях почвы меняется в зависимости от сезона. Ниже границы замерзания эти температурные колебания значительно снижаются. Накопленное в грунте тепло извлекается посредством горизонтально проложенных герметичных теплообменников, называемых также земельными коллекторами, или посредством вертикально проложенных теплообменников, так называемых геотермальными зондами. Тепло окружающей среды передается смесью воды и этиленгликоля рассолом или медиумом , температура замерзания которого должна составлять примерно -13 C принять во внимание данные изготовителя . Благодаря этому рассол не замерзает в процессе работы.

Значит, возможны два варианта получения низкопотенциального тепла из грунта. Горизонтальная укладка пластиковых труб в траншеи глубиной 1,3 1,7 м, в зависимости от климатических условий местности, либо вертикальные скважины глубиной 20 100 м. Укладку труб в траншеи, можно производить и в виде спиралей, но с глубиной укладки 2 4 м, это значительно уменьшит общую длину траншей. Максимальная теплоотдача поверхностного грунта составляет от 7 до 25 Вт с м.п. с геотермального 20-50 Вт с м.п. По данным компаний производителей, срок службы траншей и скважин составляет более 100 лет.

Немного подробнее о вертикальных грунтовых теплообменниках.

С 1986 года в Швейцарии, недалеко от Цюриха, проводились исследования системы с вертикальными грунтовыми теплообменниками 4 . В грунтовом массиве был устроен вертикальный грунтовой теплообменник коаксиального типа глубиной 105 м. Этот теплообменник использовался в качестве источника низкопотенциальной тепловой энергии для теплонаносной системы, установленной в одноквартирном жилом доме. Вертикальный грунтовой теплообменник обеспечивал пиковую мощность примерно 70 Вт на каждый метр длины, что создавало значительную тепловую нагрузку на окружающий грунтовой массив. Годовое производство тепловой энергии составляет около 13 МВт ч.

На расстоянии 0,5 и 1 м от основной скважины были пробурены две дополнительных, в которых на глубине в 1, 2, 5, 10, 20, 35, 50, 65, 85 и 105 м установлены датчики температуры, после чего скважины были заполнены глинисто-цементной смесью. Температура измерялась каждые тридцать минут. Кроме температуры грунта фиксировались и другие параметры: скорость движения теплоносителя, потребление энергии приводом компрессора температура воздуха и т. п.

Первый период наблюдений продолжался с 1986 по 1991 год. Измерения показали, что влияние тепла наружного воздуха и солнечной радиации отмечается в поверхностном слое грунта на глубине до 15 м. Ниже этого уровня тепловой режим грунта формируется главным образом за счет тепла земных недр. За первые 2-3 года эксплуатации температура грунтового массива, окружающего вертикальный теплообменник, резко понизилась, однако с каждым годом понижение температуры уменьшалось, и через несколько лет система вышла на режим, близкий к постоянному, когда температура грунтового массива вокруг теплообменника стала ниже первоначальной на 1-2 C.

Осенью 1996 года, через десять лет после начала эксплуатации системы, измерения были возобновлены. Эти измерения показали, что температура грунта существенным образом не изменилась. В последующие годы были зафиксированы незначительные колебания температуры грунта в пределах 0,5 C в зависимо

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.