134. Проектирование автоматизированных систем — курс лекций

Федеральное агентство по образованию

Сибирская государственная автомобильно-дорожная академия

СибАДИ

ПРОЕКТИРОВАНИЕ АВТОМАТИЗИРОВАННЫХ СИСТЕМ

КОНСПЕКТ ЛЕКЦИЙ

для студентов специальности 220301 «Автоматизация технологических процессов и производств строительство »

Омск

2008

1. Системный подход к проектированию

1.1 Системы автоматики и их классификация с точки зрения сложности

Под системой обычно понимается регулярное или упорядоченное устройство, состоящее из взаимосвязанных частей, действующих как одно целое, и предназначенное для достижения какой-либо определенной цели.

Это определение не является исчерпывающим и строгим. Известно большое число определений термина «система», обладающих той или иной степенью конкретизации. Существенно, однако, то, что термин «система» обычно связывается с такими понятиями, как элемент, структура, связь.

В общем случае системой может быть назван любой физический объект, состоящий из ряда взаимосвязанных элементов. Если состояние системы изменяется или может измениться во времени, то такая система называется динамической.

Остановимся на системе, состоящей из n элементов. В простейшем случае между элементами действуют только двусторонние связи рис. 1, а . Очевидно, что для анализа всех связей необходимо исследовать n n-1 связей, действующих в системе.

Для систем, состоящих из сотен и тысяч элементов, число внутренних связей растет примерно пропорционально квадрату числа элементов. Отмеченное обстоятельство определяет огромные трудности анализа сложных систем.

Системы можно классифицировать разными признаками, среди которых можно выделить два основных: сложность систем и характер их функционирования.

Рисунок 1 — Классификация систем

Одна из возможных классификаций систем по указанным основным признакам представлена на рисунке 1, б.

Если в детерминированных системах все элементы системы взаимодействуют точно предвиденным образом, то в вероятностных стохастических системах точно предсказать поведение системы невозможно и ее поведение можно определить, лишь с известной степенью вероятности. Критерий сложности систем является весьма условным.

Простыми обычно считают системы, не имеющие разветвленной структуры, с небольшим количеством взаимосвязанных и взаимодействующих элементов. Такие системы могут содержать от 10 до 10 3 элементов. В простых системах отсутствуют иерархические уровни.

К сложным системам относят системы с развитой иерархической структурой и большим числом элементов и внутренних связей. Такие системы могут содержать от 10 1 до 10 7 элементов. Однако подобное определение сложных систем является весьма условным. Часто к сложным относят либо системы, которые нельзя корректно описать математически или можно описать не менее чем на двух различных математических языках например, на языке дифференциальных уравнений и на языке алгебры логики , либо системы, для изучения которых необходимо решать задачи с непомерно большим объемом вычислений. Систему считают сложной, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов.

Очень сложные системы часто называют большими системами.

Известен ряд определений термина «большая система», каждое из которых характеризуется той или иной степенью неопределенности.

Так, по Роберту Маколу большая система определяется семью признаками:

1. Система создается человеком из различного оборудования и сырья

2. Система обладает цельностью. Все ее части служат достижению единой цели — выработке определенной продукции с помощью набора оптимизированных выходов при заданных входных воздействиях

3. Система является большой как с точки зрения разнообразия составляющих ее элементов, так и с точки зрения количества одинаковых частей, возможно, количества функций и, конечно, стоимости

4. Система является сложной. Это означает, что изменение какой-либо переменной влечет за собой изменения других переменных, причем подобная зависимость редко оказывается линейной

5. Система является полуавтоматической. Это означает, что часть функций системы выполняются автоматами, а часть — человеком

6. Входные воздействия системы имеют стохастическую природу. Отсюда появляется невозможность предсказания поведения системы для любого момента времени

7. Большинство систем и в первую очередь наиболее сложные содержат элементы конкурентной ситуации.< /p>

Согласно определению, данному Петровым Б.Н. и Поспеловым Г.С. большим системам управления, состоящим из объекта управления и управляющих систем, связанных каналами передачи информации, присущи следующие пять признаков:

1. Система управления имеет иерархическую структуру и представляет собой комплекс подсистем управления различных рангов рис. 2, а . При этом выпадение или отказ какой-либо подсистемы или части подсистем не всегда приводит к отказу или распаду всей системы, а иногда только к снижению эффективности ее функционирования

Рисунок 2 — Структура и основные этапы развития систем

2. Органы управления управляющие системы подсистем и всей системы организованы по иерархическому принципу, т.е. представляют собой коллективы, функционирующие во главе с руководителями разных рангов

3. Главнейшие функции управления, планирования, оценки ситуаций или складывающейся обстановки и принятие решений осуществляются непосредственно коллективами управляющих систем

4. Организованные коллективы органов управления предопределяют у всей системы в целом, как и у любого социального организма, существование в той или иной степени свойств адаптации и самоорганизации

5. В органах управления различных рангов применены вычислительные машины для оптимизации принимаемых решений и для преобразования и переработки потоков информации. Вычислительные машины органов управления старших и младших рангов связаны специальными каналами связи.

Приведенные признаки в основном адресованы к специально организованным для целей управления и принятия решений коллективам людей, однако они сохраняют силу и для чисто автоматических технических систем переработки информации.

Большие системы обладают следующими основными свойствами:

1. Незначительные изменения во внешней среде могут вызвать в этих системах процессы, несоизмеримые по своим масштабам с породившими их изменениями

2. Процессы разработки, конструирования и изготовления этих систем занимают большое количество времени обычно несколько лет и требуют привлечения больших коллективов специалистов в различных областях техники

3. Большинство этих систем должно обладать свойствами адаптации и самоорганизации. Другими словами — структура этих систем изменяется, причем изменения далеко не всегда могут быть предсказаны

4. Функционирование систем преследует определенную, независящую от них цель, и эта цель может изменяться в процессе эволюции внешней среды.

1.2 Основные этапы жизни системы

Любая техническая система возникает не сразу и проходит этапы развития, основные из которых показаны на рисунке 2, б. Следует иметь в виду, что замысел или первоначальная концепция новой сложной системы никогда не возникает в законченном и отработанном виде. В этом смысле замысел новой системы отличается от ее конечного воплощения, так же как человеческий эмбрион от сформировавшегося человека.

В процессе проектирования новая система должна быть отражена спроектирована на бумаге. Иными словами должна быть разработана и выпущена техническая документация, по которой проектируемая система может быть изготовлена в промышленных условиях.

Затем должны быть изготовлены опытные образцы, которые необходимо проверить испытать .

С этой целью этап проектирования включает не только выпуск технической документации, но и тщательную теоретическую и экспериментальную отработку образцов. Для этого этап проектирования включает в себя изготовление единичных и опытных образцов, обеспечивающее с одной стороны, проведение необходимых экспериментальных работ, а с другой стороны, служащее для отработки технической документации и технологии изготовления системы.

Испытания на этапе проектирования охватывают как моделирование и лабораторные исследования, так и испытания в условиях, приближающихся к условиям эксплуатации натурные испытания .

В идеальном случае производство серийное производство сложных систем для нормальной эксплуатации осуществляется по тщательно отработанной на этапе проектирования технической документации.

Однако в силу того, что технология серийного производства, как правило, отличается от технологии опытного производства, осуществляемого на этапе проектирования, а также вследствие того, что на этапе отработки, как правило, в неполной мере учитываются статистические характеристики комплектующих систему элементов, в процессе серийного производства неизбежна доработк
а технической документации, осуществляемая с привлечением проектировщиков.

Одной из основных задач проектировщиков на этапе производства является разработка методов оптимизации производства и повышения его эффективности.

Поскольку эксплуатация с точки зрения потребителей системы является основным этапом ее жизни, то усилия проектировщиков направлены на то, чтобы обеспечить безусловное выполнение системой заданных технических характеристик.

С этой целью на этапе проектирования разрабатываются методы и технические средства обслуживания системы.

Они, как правило, включают системы контроля и восстановления технического состояния эксплуатируемой сложной системы. В силу изложенного снятие с эксплуатации системы связано с ее моральным старением и неэффективностью ее дальнейшей эксплуатации.

1.3 Задачи проектирования

Проектирование систем представляет собой высокоинтеллектуальное занятие, творчество, требующее применения разнообразных знаний. Задачей инженерного проектирования является разработка, при некоторых ограничениях, обусловленных способом решения, систем элементов, процессов , обеспечивающая оптимальное выполнение поставленной задачи при некоторых ограничениях, накладываемых на решение.

Как следует из рисунка 3, основными ограничениями, помимо физических, являются: наличие знаний навыков , в том числе технологических, наличие необходимых материалов и комплектующих элементов и устройств, возможности имеющегося лабораторного и производственного оборудования, имеющаяся вычислительная техника и сроки проектирования.

На последнем ограничении следует остановиться особо. При современных, все ускоряющихся темпах научного и технического прогресса предельное сокращение сроков проектирования становится одним из главных требований к процессу проектирования.

Действительно, при увеличении сроков проектирования, новизна и оригинальность решений, используемых в проекте, теряются. Еще не будучи осуществленным, проект может морально устареть и потерять смысл. Поэтому быстротечность процесса проектирования, иными словами динамика этого процесса, становится одной из главных его характеристик.

Важнейшей задачей проектирования является разработка и отработка полного комплекта технической документации на систему. Эта документация, с одной стороны, должна обеспечивать возможность промышленного изготовления системы, отвечающей заданным требованиям, и, с другой стороны, — обеспечивать надежную эксплуатацию системы в заданных условиях.

Рисунок 3 — Ограничения при проектировании систем

В результате проектирования выпускается большой объем технической документации, состав которой в нашей стране определяется системой ГОСТов.

Эти ГОСТы можно условно разделить на три группы:

1 стандарты на правила разработки и классификации конструкторских документов

2 стандарты на правила выполнения и оформления конструкторских документов

3 стандарты на правила обращения и использования конструкторских документов.

Техническую документацию, выпускаемую в процессе проектирования, подразделяют на следующие категории:

— схемную

— конструкторскую

— монтажную

— текстовую

— технологическую

— эксплуатационную.

Если схемная, конструкторская, монтажная и текстовая документации являются отражением идей и принципов, заложенных в систему при ее проектировании, и отвечают на вопрос, что должно быть изготовлено, то технологическая документация дает представление о методах и средствах изготовления системы.

Эксплуатационная документация, как правило, включает в себя основные документы схемной, конструкторской и текстовой документации и должна обеспечивать грамотную эксплуатацию системы.

1.4 Условия эксплуатации систем и их влияние на процесс проектирования

Системы автоматики эксплуатируются в условиях воздействия на них различных факторов, из которых можно выделить две группы: объективные, определяемые средой, и субъективные, определяемые обслуживанием системы рис. 4 .

Рисунок 4 — Эксплуатационные факторы, воздействующие на системы

В зависимости от особенностей применения системы автоматики подразделяют на: стационарные, наземные, автомобильные, судовые корабельные , авиационные, космические и т.п.

Естественно, что условия эксплуатации, а следовательно, и требования к системам будут различными для каждого из перечисленных видов. Так, например, системы стационарного типа не б

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.